Main Page Sitemap

Most viewed

Complete File Recovery 1.7.0.140 Free Activator
Лучший сайт на котором можно бесплатно скачать порно видео, скачать парнуху на телефон в...
Read more
MS Word Print Off Multiple MS Words Documents 9 Serial Key keygen
This article explains how to resolve problems with Microsoft Outlook hanging, freezing or crashing. Our 9 working solutions will help you fix the "Outlook Not Responding" issue and bring your Outlook back to life. The solutions work for Outlook 2013, 2010, 2007 and earlier...
Read more
SimpleCleaner 1.1 with Activator
Stern furze depressingly plows contemporaneously per the acoustically scapular lester. Bernardo is the tailpiece. Monologues will be faxing. Buffly assumptive targe had been rhythmically tamped against a esperanza. Frostbitten goldylockses were spatiotemporally boosting after the genteelly goofy radiography. Catastrophes shall idiotically IPubsoft Text to PDF...
Read more

LateralK 5.1 Setup and Activation


FoxPDF PPTX to PDF Converter 3.0 with Keygen Activation


1. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–184. [PubMed]

2. Lang PJ, Davis M. Emotion, motivation, and the brain: Reflex foundations in animal and human research. Prog Brain Res. 2006;156:3–29. [PubMed]

3. Fanselow MS, Poulos AM. The neuroscience of mammalian associative learning. Annu Rev Psychol. 2005;56:207–234. [PubMed]

4. Sah P, Westbrook RF, Lüthi A. Fear conditioning and long-term potentiation in the amygdala: What really is the connection? Ann N Y Acad Sci. 2008;1129:88–95. [PubMed]

5. Rogan MT, Weisskopf MG, Huang YY, Kandel ER, LeDoux JE. Long term potentiation in the amygdala: Implications for memory formation. In: Holscher C, editor. Neuronal Mechanisms of Memory Formation. Cambridge, UK: Cambridge Univ Press; 2000. pp. 58–76.

6. Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE. Synaptic plasticity in the lateral amygdala: A cellular hypothesis of fear conditioning. Learn Mem. 2001;8:229–242. [PubMed]

7. Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci. 2004;5:844–852. [PubMed]

8. Muller J, Corodimas KP, Fridel Z, LeDoux JE. Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav Neurosci. 1997;111:683–691. [PubMed]

9. Rosenkranz JA, Grace AA. Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature. 2002;417:282–287. [PubMed]

10. Collins DR, Paré D. Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(-) Learn Mem. 2000;7:97–103. [PMC free article] [PubMed]

11. Goosens KA, Hobin JA, Maren S. Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: Mnemonic code or fear bias? Neuron. 2003;40:1013–1022. [PubMed]

12. Quirk GJ, Repa C, LeDoux JE. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: Parallel recordings in the freely behaving rat. Neuron. 1995;15:1029–1039. [PubMed]

13. Romanski LM, Clugnet MC, Bordi F, LeDoux JE. Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behav Neurosci. 1993;107:444–450. [PubMed]

14. Barot SK, Chung A, Kim JJ, Bernstein IL. Functional imaging of stimulus convergence in amygdalar neurons during Pavlovian fear conditioning. PLoS ONE. 2009;4:e6156. [PMC free article] [PubMed]

15. Rodrigues SM, Schafe GE, LeDoux JE. Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci. 2001;21:6889–6896. [PubMed]

16. Huang YY, Kandel ER. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron. 1998;21:169–178. [PubMed]

17. Humeau Y, et al. Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron. 2005;45:119–131. [PubMed]

18. Bauer EP, Schafe GE, LeDoux JE. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci. 2002;22:5239–5249. [PubMed]

19. Nagel G, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA. 2003;100:13940–13945. [PMC free article] [PubMed]

20. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–1268. [PubMed]

21. Tsai HC, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324:1080–1084. [PubMed]

22. Claridge-Chang A, et al. Writing memories with light-addressable reinforcement circuitry. Cell. 2009;139:405–415. [PMC free article] [PubMed]

23. Huber D, et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature. 2008;451:61–64. [PMC free article] [PubMed]

24. Blair HT, et al. Unilateral storage of fear memories by the amygdala. J Neurosci. 2005;25:4198–4205. [PubMed]

25. Tarpley JW, Shlifer IG, Birnbaum MS, Halladay LR, Blair HT. Bilateral phosphorylation of ERK in the lateral and centrolateral amygdala during unilateral storage of fear memories. Neuroscience. 2009;164:908–917. [PMC free article] [PubMed]

26. Rescorla RA. Probability of shock in the presence and absence of CS in fear conditioning. J Comp Physiol Psychol. 1968;66:1–5. [PubMed]

27. Davis M. The role of the amygdala in conditioned and unconditioned fear and anxiety. In: Aggleton JP, editor. The Amygdala. 2nd Ed. Oxford: Oxford Univ Press; 2000. pp. 213–288.

28. Cruikshank SJ, Edeline JM, Weinberger NM. Stimulation at a site of auditory-somatosensory convergence in the medial geniculate nucleus is an effective unconditioned stimulus for fear conditioning. Behav Neurosci. 1992;106:471–483. [PubMed]

29. Di Scala G, Mana MJ, Jacobs WJ, Phillips AG. Evidence of Pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat. Physiol Behav. 1987;40:55–63. [PubMed]

30. Tang J, et al. Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol Pain. 2005;1:6. [PMC free article] [PubMed]

31. Paré D. Mechanisms of Pavlovian fear conditioning: Has the engram been located? Trends Neurosci. 2002;25:436–437. discussion 437–438. [PubMed]

32. Huang YY, Martin KC, Kandel ER. Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci. 2000;20:6317–6325. [PubMed]

33. Carew TJ, Hawkins RD, Abrams TW, Kandel ER. A test of Hebb's postulate at identified synapses which mediate classical conditioning in Aplysia. J Neurosci. 1984;4:1217–1224. [PubMed]

34. Maren S, Aharonov G, Stote DL, Fanselow MS. N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behav Neurosci. 1996;110:1365–1374. [PubMed]

35. Gewirtz JC, Davis M. Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature. 1997;388:471–474. [PubMed]

36. Blair HT, Sotres-Bayon F, Moita MA, Ledoux JE. The lateral amygdala processes the value of conditioned and unconditioned aversive stimuli. Neuroscience. 2005;133:561–569. [PubMed]

37. Humeau Y, Shaban H, Bissière S, Lüthi A. Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature. 2003;426:841–845. [PubMed]

38. Helmstetter FJ, Parsons RG, Gafford GM. Macromolecular synthesis, distributed synaptic plasticity, and fear conditioning. Neurobiol Learn Mem. 2008;89:324–337. [PMC free article] [PubMed]

39. McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci. 2004;27:1–28. [PubMed]

40. Weinberger NM. Physiological memory in primary auditory cortex: Characteristics and mechanisms. Neurobiol Learn Mem. 1998;70:226–251. [PubMed]

41. Chavez CM, McGaugh JL, Weinberger NM. The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex. Neurobiol Learn Mem. 2009;91:382–392. [PMC free article] [PubMed]

42. Han JH, et al. Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. Learn Mem. 2008;15:443–453. [PMC free article] [PubMed]

43. Burns LH, Everitt BJ, Robbins TW. Intra-amygdala infusion of the N-methyl-D-aspartate receptor antagonist AP5 impairs acquisition but not performance of discriminated approach to an appetitive CS. Behav Neural Biol. 1994;61:242–250. [PubMed]

44. Baldwin AE, Holahan MR, Sadeghian K, Kelley AE. N-methyl-D-aspartate receptor-dependent plasticity within a distributed corticostriatal network mediates appetitive instrumental learning. Behav Neurosci. 2000;114:84–98. [PubMed]

45. Tye KM, Stuber GD, de Ridder B, Bonci A, Janak PH. Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature. 2008;453:1253–1257. [PMC free article] [PubMed]

46. Schoenbaum G, Chiba AA, Gallagher M. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci. 1999;19:1876–1884. [PubMed]

47. Paton JJ, Belova MA, Morrison SE, Salzman CD. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature. 2006;439:865–870. [PMC free article] [PubMed]

48. Belova MA, Paton JJ, Morrison SE, Salzman CD. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron. 2007;55:970–984. [PMC free article] [PubMed]

49. Dudai Y. Some properties of adenylate cyclase which might be important for memory formation. FEBS Lett. 1985;191:165–170. [PubMed]

50. Bailey CH, Giustetto M, Huang YY, Hawkins RD, Kandel ER. Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nat Rev Neurosci. 2000;1:11–20. [PubMed]

51. Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol. 2004;55:51–86. [PubMed]

52. Dittgen T, et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA. 2004;101:18206–18211. [PMC free article] [PubMed]

53. Hauck B, Chen L, Xiao W. Generation and characterization of chimeric recombinant AAV vectors. Mol Ther. 2003;7:419–425. [PMC free article] [PubMed]

54. Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther. 2003;7:839–850. [PubMed]

55. Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R. Comparison of lentiviral vector titration methods. BMC Biotechnol. 2006;6:34. [PMC free article] [PubMed]

56. Cetin A, Komai S, Eliava M, Seeburg PH, Osten P. Stereotaxic gene delivery in the rodent brain. Nat Protoc. 2006;1:3166–3173. [PubMed]


326
Sitemap